sexta-feira, 28 de fevereiro de 2020


TRANS-QUÃNTICA SDCTIE GRACELI, TRANSCENDENTE, RELATIVISTA SDCTIE GRACELI, E TRANS-INDETERMINADA.

FUNDAMENTA-SE EM QUE TODA FORMA DE REALIDADE SE ENCONTRA EM TRANSFORMAÇÕES, INTERAÇÕES, TRANSIÇÕES DE ESTADOS [ESTADOS DE GRACELI], ENERGIAS E FENÔMENOS DENTRO DE UM SISTEMA DE DEZ OU MAIS DIMENSÕES DE GRACELI, E CATEGORIAS DE GRACELI.




FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =


TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

x
 [EQUAÇÃO DE DIRAC].

 + FUNÇÃO TÉRMICA.

   +    FUNÇÃO DE RADIOATIVIDADE

  ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

  + ENTROPIA REVERSÍVEL 

+      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

 ENERGIA DE PLANCK

X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
    x
número atômico, estrutura eletrônica, níveis de energia 
onde c, velocidade da luz, é igual a .]


  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
  • x
  • X
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D





Em física (mais especificamente, em teoria cinética) a relação de Einstein (também conhecida como relação de Einstein–Smoluchowski) é uma conexão inesperada revelada anteriormente de forma independente por Albert Einstein em 1905 e por Marian Smoluchowski (1906) em seus estudos sobre movimento Browniano. Dois importantes casos especiais da relação são:
 (difusão de partículas carregadas)
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS



 
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS



("equação de Einstein–Stokes", para a difusão de partículas esféricas através de um líquido com baixo número de Reynolds)
onde
A forma mais geral da equação é:
onde a "mobilidade" μ é a raz
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS



ão da velocidade de deriva terminal da partícula a uma força aplicada, μ = vd / F.
Esta equação é um exemplo inicial do relação de flutuação-dissipação. É frequentemente usada no fenômeno de eletrodifusão.

Derivações de casos especiais da forma geral[editar | editar código-fonte]

Equação da mobilidade elétrica[editar | editar código-fonte]

Para uma partícula com carga q, sua mobilidade elétrica μq é relacionada a sua mobilidade generalizada μ pela equação μ=μq/q. Entretanto, a forma geral da equação
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS



é no caso de uma partícula carregada:
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS



Equação de Einstein–Stokes[editar | editar código-fonte]

No limite de baixos números de Reynolds, a mobilidade  é o inverso do coeficiente de arrasto . Uma constante de amortecimento, , é frequentemente usada no contexto de , o que implica que o tempo de relaxamento de momento (o tempo necessário para o momento de inércia tornar-se negligenciável comparado ao momento aleatório) do objeto difusivo.
Para partículas esféricas de raio , a lei de Stokes fornece
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS


onde  é a viscosidade do medio. Então a relação de Einstein torna-se
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS



Semicondutor[editar | editar código-fonte]

Em um semicondutor com uma densidade dos estados arbitrária a relação de Einstein é[1]
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS



onde  é o potencial químico e p o número de partículas.

Prova do caso geral[editar | editar código-fonte]

(Esta é a demonstração em uma dimensão, mas é idêntica a uma demonstração em duas ou três dimensões: Apenas substitui-se d/dx com . Essencialmente a mesma deonstração é encontrada em muitos lugares, por exemplo ver Kubo.[2])
Supondo-se alguma energia potencial U cria uma força sobre uma partícula  (por exemplo, uma força elétrica). Assumindo-se que a partícula irá responder, outras coisas iguais, por mover-se com velocidade . Agora assume-se que existe um grande número de tais partículas, com concentração  como uma função da posição. Após algum tempo, o equilíbrio irá ser estabelecido: As partículas irão "acumular-se" em torno das áreas com mais baixa U, mas ainda serão espalhadas em certa medida por causa da difusão aleatória. Neste ponto, não há um fluxo em balanço, resultante, de partículas: A tendência das partículas para serem empurradas para mais baixa U (chamada "corrente de deriva") é igual e oposta à tendência das partículas de se espalhar devido à difusão (chamada "corrente de difusão").
O fluxo resultante de partículas devido à corrente de deriva isolado é
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS



(i.e. o número de partículas fluindo após um ponto é a concentração de partículas vezes a velocidade média.)
O fluxo líquido (resultante) de partículas devido à corrente de difusão isolada é, pela lei de Fick
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS



(o sinal negativo significa que as partículas fluem da maior concentração para a mais baixa).
O equilíbrio requer:
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS



No equilíbrio, pode-se aplicar termodinâmica, em particular a estatística de Boltzmann, para inferir que
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS



onde A é alguma constante relacionada com o número total de partículas. Portanto, com a regra da cadeia,
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS


Finalmente, ligando isso em:
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS



Como esta equação deve se sustentar em todos os locais,
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS







RELATIVIDADE SDCTIE GRACELI EM :

Mobilidade elétrica é a capacidade de partículas carregadas (tais como elétronsprótons ou íons) se movimentarem através de um meio, em resposta a um campo elétrico que as está puxando. No caso dos íons, trata-se de mobilidade iônica, enquanto no caso dos elétrons, trata-se de mobilidade eletrônica.
A separação de íons de acordo com sua mobilidade em fase gasosa é chamada espectrometria de mobilidade iônica; em fase líquida é chamada eletroforese.

Teoria[editar | editar código-fonte]

Quando uma partícula carregada em um gás ou líquido sofre a ação de um campo elétrico uniforme, ela será acelerada até que alcance uma velocidade de deriva constante de acordo com a fórmula:
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS


onde:
  •  é a velocidade de deriva (m/s)
  •  é a magnitude do campo elétrico aplicado (V/m)
  •  é a mobilidade (m2/(V.s))
Em outras palavras, a mobilidade elétrica de uma partícula é definida como a razão entre a velocidade de deriva e a magnitude do campo elétrico:
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS



A mobilidade elétrica é proporcional à carga elétrica de uma partícula. Esta é a base para a demonstração de Robert Millikan de que cargas elétricas ocorrem em unidades discretas, cuja magnitude é a carga de um elétron.
A mobilidade elétrica das partículas esféricas, cujo diâmetro é maior do que o caminho livre médio das moléculas do solvente em que qual estão imersas, é inversamente proporcional ao diâmetro dessas partículas. Já a mobilidade elétrica das partículas que têm diâmetro menor do que o caminho livre médio das moléculas do solvente é inversamente proporcional ao quadrado do seu diâmetro.



RELATIVIDADE SDCTIE GRACELI EM:

lei de Stokes refere-se à força de fricção experimentada por objectos esféricos que se movem no seio de um fluido viscoso, num regime laminar de números de Reynolds de valores baixos. Foi derivada em 1851 por George Gabriel Stokes depois de resolver um caso particular das equações de Navier-Stokes. De maneira geral, a lei de Stokes é válida para o movimento de partículas esféricas pequenas, movendo-se a velocidades baixas.
A lei de Stokes pode ser escrita da seguinte forma:
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS


onde:
 é a força de fricção,
 é o raio de Stokes da partícula,
 é a viscosidade do fluido, e
 é a velocidade da partícula.
A condição de baixos números de Reynolds implica um fluxo laminar, o qual pode traduzir-se por uma velocidade relativa entre a esfera e o meio, inferior a um certo valor crítico. Nestas condições, a resistência que oferece o meio é devida quase exclusivamente às forças de atrito que se opõem ao deslizamento de camadas de fluido sobre outras a partir da camada limite aderente ao corpo. A lei de Stokes foi comprovada experimentalmente numa multitude de fluidos e de condições.
Se as partículas estão a cair verticalmente, num fluido viscoso, devido ao seu próprio peso, pode-se calcular a sua velocidade de sedimentação, igualando a força de fricção com a força de gravidade.
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS


onde:
Vs é a velocidade de sedimentação das partículas (velocidade limite)
g é a aceleração da gravidade,
ρp é a densidade das partículas e
ρf é a densidade do fluido.
Se as gotas de chuva provenientes de nuvens situadas a alguns quilômetros de altura não enfrentassem a resistência do ar, elas seriam bastante danosas ao atingir qualquer corpo na superfície terrestre. Porém isto não acontece porque elas alcançam uma velocidade terminal pequena. Para gotas de 1 mm de diâmetro, esta velocidade é de aproximadamente 4,3 m/s, e para gotas de 2 mm, v=5,8 m/s.




RELATIVIDADE SDCTIE GRACELI EM:

Em física estatística e física da matéria condensadadensidade de estados (DOS, do inglês density of states) é a propriedade que quantifica quão proximamente "empacotado" em níveis de energia está um sistema mecânico quântico. Um DOS alto em um nível específico de energia significa que há muitos estados disponíveis para ocupação. Um DOS nulo, zero, significa que nenhum estado pode ser ocupado em um nível de energia.

Explanação[editar | editar código-fonte]

Ondas, partículas comportando-se como ondas, podem somente existir dentro de sistemas mecânico quânticos (MQ) se propriedades do sistema seguem a ondulação existente. Em alguns sistemas, o espaçamento interatômico e a carga atômica do material segue somente elétrons de certos comprimento de onda existentes. Em outros sistemas. a estrutura cristalina do material leva ondas a se propagar em somente uma direção, enquanto suprime a propagação de ondas em outra direção. Ondas em um sistema MQ tem comprimentos de onda específicos e podem propagar-se em direções específicas, e cada onda ocupa um diferente modo,ou estado. Devido a muitos destes estados terem o mesmos comprimentos de onda, entretanto dividirem a mesma energia, podem existir muitos estados disponíveis em certos níveis de energia, enquanto nenhum estado é disponível em outros níveis de energia.
Por exemplo, a densidade de estados para elétrons em um semicondutor é mostrada em vermelho na Fig. 2. Para elétrons na fronteira da faixa de condução, muito poucos estados estão disponíveis para o elétron ocupar. A medida que o elétron aumenta em energia, a densidade de estados do elétron aumenta e mais estados tornam-se disponíveis para ocupação. Entretanto, porque não há estados disponíveis para elétrons ocuparem dentro da faixa de abertura, elétrons na fronteira da faixa de condução devem perder pelo menos  de energia de maneira a realizarem a transição a outro estado disponível.
A densidade de estados pode ser calculada para elétronsfótons, ou fónons em sistemas MQ. É usualmente notado com um dos símbolos gn, ou N. É uma função g(E) da energia interna E, na qual a expressão g(E) dE representa o número de estado com energias entre E e E+dE.
Para converter entre energia e vetor de onda, a relação específica entre E e k deve ser conhecida. Por exemplo, a fórmula para elétrons é
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS

E para fótons, a fórmula é
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS


Pode também ser escrito como uma função da frequência angular , a qual é proporcional à energia. A densidade de estados é usada extensivamente em física da matéria condensada, onde pode referir-se ao nível de energia dos elétronsfótons ou fônons em um sólido cristalino. Em sólidos cristalinos, há frequentemente níveis de energia onde a densidade dos estados dos elétrons é zero, o que significa que os elétrons não podem ser excitados a estas energias. A densidade dos estados também ocorre na regra dourada de Fermi, a qual descreve quão rápido as transições mecânico quânticas ocorrem na presença de uma perturbação.
Num sistema tridimensional, a densidade de estados em espaço recíproco (espaço k) é
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS


onde V é o volume e n o número de pontos de ramificação que existem para um único valor de k. Estes pontos de ramificação são por exemplo o spin-acima e spin-abaixo estados para elétrons, as polarizações de fótons, e os modos longitudinais ou transversais para fônons.

Materiais cristalinos[editar | editar código-fonte]

Dado que em materiais (cristalinos), o número de escalas varia linearmente com o volume, uma diferente definição de densidade de estados é algumas vezes usada, na qual g(E) ou g(k) é o número de estados por unidade de energia (vetor onda) e por unidade de volume ou por unidade de célula da grade.
Em um material cristalino, onde os estados mecânico quânticos podem ser descritos em termos de seus vetores de onda k, a densidade dos estados como uma função de k é não dependente das propriedades do material. Das condições periódicas segue que em um volume arbitrário , somente vetores k são mantidos satisfazendo
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS

onde  são inteiros positivos ou negativos arbitrários. Usando
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS


pode ser derivado que para uma matriz tridimensional o número de estados G(k) dk entre k e k+dk é
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS


para um único caso.
Em sólidos, a relação entre E e k é geralmente muito complexa e dependente do material. Se a relação é conhecida, a expressão para a densidade dos estados é
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS
A relação acima é somente significativa se a energia somente depende da manitude  do vetor k.